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54506 Vandœuvre lès Nancy Cedex, France

Received 23 September 2005
Published online 16 December 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. We study the relaxation behaviour of the quantum Ising chain, focusing our attention onto the
non-equilibrium dynamics of the transverse magnetization. The initial states, from which the magnetization
relaxes, are product states such as those generated by setting in contact several systems, each initially
equilibrated at a given temperature. Due to the free fermionic structure of the chain, the dynamics of
the transverse magnetization is easily expressed in a compact form. In the completely factorized initial
state, corresponding to a situation where all the spins are thermalized independently, we obtain in the
scaling limit the Green function associated to the transverse magnetization. The relaxation behaviour is
also considered in the system-bath case, where part of the chain called the system is thermalized at a
temperature Ts and the remaining part is at a temperature Tb. The magnetization profiles show a scaling
behaviour. Moreover, in the extreme case Tb = ∞ and Ts = 0, it is shown that the magnetization relaxes
in quantized steps in the strong transverse field region.

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling,
etc.) – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Out of equilibrium properties of quantum chains have
been the purpose of several recent studies (see Ref. [1]
for a recent review). In particular, after precursor stud-
ies [2–4] at the end of the sixties, some renewed inter-
est has been put on the relaxation properties of free
fermionic quantum chains initially prepared in nonequilib-
rium states [5–9,12,13]. The influence of randomness was
also considered in this context [14]. In this contribution,
we present the relaxation of the transverse magnetization
of an Ising quantum chain. The system is initially pre-
pared in a factorized state ρ(0) =

∏
j ρj where the density

matrices ρj ∝ e−βjHj are canonical states of parts of the
chain thermalized each at a given temperature β−1

j . One
can look at that state as obtained from a chain initially
split into several non-interacting terms: H0 =

∑
j Hj , each

in contact with a specific heat bath. At time t = 0, the
interactions between the different parts are switched on,
the heat baths removed, so that the time evolution of the
system is generated quantum mechanically by the total
Hamiltonian H = H0 +

∑
j HI

j,j+1, such that the system
will relax from the initial factorized state ρ(0) toward a
new state. In particular, we will focus our attention on the
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behaviour of the initial interface by following the front dy-
namics generated by the initial thermal inhomogeneity.

In this paper, we present the transverse magnetiza-
tion profiles obtained on two different situations. The first
considered is a situation where the chain is split into two
parts, one at low temperature called the “system”, the
other at high temperature called the “bath”. So, in the
system-bath case, we concentrate on the front dynamics
generated by the interface between the system and the
bath parts [6,12,13]. The other situation we have consid-
ered in this study is the droplet-like case, where a low tem-
perature finite part of sizeN is put in contact at both ends
with high temperature infinite chains. In this case, we con-
centrate on the large time t� N relaxation of the initial
non-equilibrium transverse magnetization, which shows a
scaling behaviour.

The paper is organized as follows: in the next section
we present the dynamics of the Ising quantum chain solved
in terms of Clifford operators [12]. One may notice here
that the choice of Clifford operators is somehow arbitrary,
in the sense that it is not necessary in order to solve the
dynamics. It is more common that people use Fermion al-
gebra instead of Clifford algebra. We show how we calcu-
late the expectation values of several physical quantities,
paying a special attention to the transverse magnetiza-
tion. Section 5 contains our results and we end with a
short summary and discussion of them.
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2 Dynamics

The Hamiltonian of the system under consideration is
given by

H = −1
2

L−1∑

k=1

σx
kσ

x
k+1 −

h

2

L∑

k=1

σz
k (1)

where the σs are the Pauli matrices and where h is the
transverse field pointing in the z-direction. As it is well
known, this Hamiltonian can be fermionized thanks to the
Jordan-Wigner transformation [15]:

σx
n =

n−1∏

j=1

(−σz
j )Γ 1

n (2)

σy
n = −

n−1∏

j=1

(−σz
j )Γ 2

n (3)

so that
σz

n = −iΓ 2
nΓ

1
n (4)

where the Γ s are Clifford operators satisfying the anti-
commutation rules

{Γ i
n, Γ

j
m} = 2δn,mδi,j . (5)

The Hamiltonian can then be diagonalized by a linear
canonical transformation of the Clifford operators [16,12]
and the dynamics of the lattice operators is easily solved,
see the appendix for more details, and leads to

Γ j
n(t) =

∑

k,i

〈Γ i
k|Γ j

n(t)〉Γ i
k (6)

where the time-dependent contractions 〈Γ i
k|Γ j

n(t)〉 are ex-
plicitly given in the appendix. They depend on the eigen-
vectors and eigenvalues of the canonical transformation.
Since all the operators of the theory can be expressed in
terms the operators Γ s, their dynamics is formally known.

3 Expectation values

In this work, we have considered systems prepared in fac-
torized initial states of the form

ρ(0) =
∏

j

ρj (7)

where the initial density matrix ρ(0) is given by a product
of smaller density matrices ρj , corresponding to initially
non-interacting subsystems. To be more specific, we have
used the canonical initial distributions

ρj =
1
Zj

exp(−βjHj) (8)

where βj is the inverse temperature of the subsystem Hj

which is a part of the full Hamiltonian H. Zj is the corre-
sponding partition function. The expectation value of an
observable O at time t is given by

〈O〉(t) = Tr

{

O(t)
∏

j

ρj

}

(9)

where O(t) is the operator associated to the observable O
in the Heisenberg picture.

In particular, in the following we will pay some atten-
tion on the two-temperatures problem

ρ(0) = ρsρb (10)

with a small system of size N initially prepared at a tem-
perature Ts putted in contact at one end with a big system
of size M (called the bath) at a temperature Tb. After the
contact, the time evolution will be governed by the Hamil-
tonian (1) with L = N +M . The expectation value takes
the form

〈O〉(t) =
1

ZsZb
Tr{O(t)e−βsHse−βbHb} (11)

with O(t) = eiHtOe−iHt and where the total Hamiltonian
is split into

H = Hs + Hb + HI (12)

with

Hs = −1
2

N−1∑

k=1

σx
kσ

x
k+1 −

h

2

N∑

k=1

σz
k , (13)

Hb = −1
2

N+M−1∑

k=N+1

σx
kσ

x
k+1 −

h

2

N+M∑

k=N+1

σz
k , (14)

and where HI = − 1
2σ

x
Nσ

x
N+1 is the initial interface in-

teraction term. For example, in the situation where the
system consists of only one spin, expressing the bath part
in terms of its diagonal fermionic operators η†, η, one has
for the total Hamiltonian

H = −h
2
σz

1 +
M∑

q=1

εb
qη

†
qηq − 1

2
σx

1

M∑

q=1

φb
q(1)(η†q + ηq) , (15)

where φq(1) refers for the first bath site. The total Hamil-
tonian thus obtained is the fermionic bath version of the
so-called “spin-boson” model [10,11]. The bath degrees of
freedom act on the two-state system by the linear coupling
− 1

2σ
x
1 ξ = − 1

2σ
x
1

∑M
q=1 φ

b
q(1)(η†q + ηq). The present study

can be interpreted in this context.
To evaluate the expectation value 〈O〉(t), one first has

to express the operator O(t) in terms of the elementary
time-independent Γ ν

n Clifford operators. Then, one will
have to evaluate expressions of the form

1
ZsZb

Tr{Γ i1
k1
...Γ in

kn
e−βsHse−βbHb} (16)

which can be calculated explicitly noticing that the Hamil-
tonians Hs and Hb can be expressed in terms of the lattice
operators Γk.

4 Transverse magnetization

4.1 System plus bath initial state

The transverse magnetization is very simply expressed in
terms of the Clifford operators, since it is a local quantity.
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One has in the Heisenberg picture

σz
n(t) = −iΓ 2

n(t)Γ 1
n(t) . (17)

The expectation value of the transverse magnetization,
with initial state ρ(0) = ρsρb, where the first N spins of
the chain are prepared in the canonical state ρs while the
M remaining spins are in ρb, is

〈σz
n〉(t) = −i

2∑

ν,ν′=1

N+M∑

k,k′=1

〈Γ ν
k |Γ 2

n(t)〉〈Γ ν′
k′ |Γ 1

n(t)〉

×Tr{ρsρbΓ
ν
k Γ

ν′
k′ } . (18)

The time contractions 〈Γ ν
k |Γµ

n (t)〉 are known and given
in terms of the φ, ψ which are obtained by the diagonal-
ization of the T matrix. What remains to be done is to
evaluate the trace Tr{ρsρbΓ

ν
k Γ

ν′
k′ }. One distinguishes three

different situations: Γ ν
k and Γ ν′

k′ are in the system part,
Γ ν

k and Γ ν′
k′ are in the bath part, and finally one is in the

system while the other is in the bath. In the first case,
noticing that

Γ 1,2
k = Γ 1,2

s,k ∀k = 1 . . .N (19)

where the Γs,ks are the Clifford operators associated to
the first part of the chain (disconnected from the rest) of
size N , one has for the trace term

Tr{ρsρbΓ
ν
k Γ

ν′
k′ } = Trs{ρsΓ

ν
s,kΓ

ν′
s,k′} (20)

The same considerations, together with the fact that

Γ 1,2
b,k = QsΓ

1,2
k+N (21)

where the Γb,ks are associated to the bath part and where
Qs =

∏N
j=1(−σz

j ) is the charge operator of the system
part, leads to the expression

Tr{ρsρbΓ
ν
k+NΓ

ν′
k′+N} = Trb{ρbΓ

ν
b,kΓ

ν′
b,k′} (22)

with the indices k and k′ running from 1 to M . Finally, in
the last case with one Clifford operator in each sector, it is
easy to show that the trace is vanishing since it is propor-
tional to terms of the form Trb{e−βbi

εb,q
2 γ1

b,qγ2
b,qγν

b,q} = 0.
Taking into account all the various contributions, one ob-
tains for the expectation value of the transverse magneti-
zation

〈σz
n〉(t) = Sn(t) +Bn(t) (23)

where

Sn(t) =
N∑

k,k′=1

[〈Γ 1
k |Γ 1

n(t)〉〈Γ 2
k′ |Γ 2

n(t)〉

− 〈Γ 1
k |Γ 2

n(t)〉〈Γ 2
k′ |Γ 1

n(t)〉] (S)k,k′ (24)

and

Bn(t) =
M∑

k,k′=1

[〈Γ 1
k+N |Γ 1

n(t)〉〈Γ 2
k′+N |Γ 2

n(t)〉

− 〈Γ 1
k+N |Γ 2

n(t)〉〈Γ 2
k′+N |Γ 1

n(t)〉] (B)k,k′ (25)

with the canonical contractions of the system

(S)k,k′ = −
N∑

q=1

φs,q(k)ψs,q(k′) tanh
(
βs
εs,q

2

)
(26)

and the canonical contractions of the bath

(B)k,k′ = −
M∑

q=1

φb,q(k)ψb,q(k′) tanh
(
βb
εb,q
2

)
. (27)

4.2 General expressions

The matrices S and B contain the initial state properties.
They can be rewritten more explicitly in terms of the spin
operators, utilizing equations (2) and (3), as

(S)k,k′ = Tr{ρsiΓ
1
s,kΓ

2
s,k′} = −Tr{ρsiσ

x
kQ

s
kQ

s
k′σ

y
k′}(28)

and

(B)k,k′ = Tr{ρbiΓ
1
b,kΓ

2
b,k′} =

− Tr{ρbiσ
x
N+kQ

b
kQ

b
k′σ

y
N+k′} (29)

withQs
k ≡ ∏k−1

j=1 (−σz
j ) andQb

k ≡ ∏k−1
j=1 (−σz

N+j). Defining
the (N +M) × (N +M) matrix I as

I =
(

S 0
0 B

)

(30)

and the time-dependent element

P k,k′
n,n′ (t)=〈Γ 1

k |Γ 1
n(t)〉〈Γ 2

k′ |Γ 2
n′(t)〉 − 〈Γ 1

k |Γ 2
n′(t)〉〈Γ 2

k′ |Γ 1
n(t)〉,
(31)

it is possible to write the expectation value of the trans-
verse magnetization as

〈σz
n〉(t) =

L=N+M∑

k,k′=1

P k,k′
n,n (t)(I)k,k′ . (32)

It is easy to generalize that expression for initial product
canonical states of the form

∏K
j=1 ρj since in this case, the

initial matrix I takes the form

I =

⎛

⎜
⎜
⎝

I1 0 . . . 0
0 I2

...
. . . 0

0 . . . 0 IK

⎞

⎟
⎟
⎠ (33)

where Ij is the initial matrix of the j-subsystem. The
transverse magnetization is given by (32).

On the same lines, we have

〈σx
nσ

x
n+1〉(t) =

L∑

k,k′=1

P k,k′
n+1,n(t)(I)k,k′ . (34)

and

〈σy
nσ

y
n+1〉(t) =

L∑

k,k′=1

P k,k′
n,n+1(t)(I)k,k′ (35)

for the bond correlations.
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5 Transverse magnetization profiles

5.1 Completely factorized initial state

In the completely factorized initial state

ρ(0) = ρ⊗L
j (36)

where all the spins are thermalized independently with
local Hamiltonian Hn = −h

2σ
z
n, the initial matrix I is

diagonal:
Ik,k′ = δk,k′ 〈σz

k〉(0) (37)

where 〈σz
k〉(0) is the initial transverse magnetization. In

this case, the transverse magnetization at later time is
given by

〈σz
n〉(t) =

∑

k

P k,k
n,n(t)〈σz

k〉(0) . (38)

In the thermodynamical limit L → ∞, the contractions
〈Γ ν

k |Γµ
n (t)〉 depend only on the difference n−k so that the

transverse magnetization is given by a discrete convolution
product

〈σz
n〉(t) =

∑

k

Ft(n− k)〈σz
k〉(0) . (39)

where the Green function Ft(n−k) = P k,k
n,n . At the critical

point, h = 1, the basic contractions are expressed in terms
of Bessel functions and one can show that [1,12]

Ft(p) = J2
2p(2t) − J2p+1(2t)J2p−1(2t) . (40)

In the continuum limit, one can show that the Green func-
tion Ft(p) = 1

t f(p
t ) with the scaling function [12]

f(u) =
1
π

√
1 − u2 |u| ≤ 1 (41)

and zero otherwise. Depending on the initial state, one
will have different profiles for the transverse magnetiza-
tion which can be in principle explicitly obtained by per-
forming the above convolution product. It is interesting to
notice that the time behaviour of the transverse magneti-
zation in this case is basically the same as in the situation
when the starting initial state is a pure state of the form

|Ψ〉 = | . . . σkσk+1 . . . 〉 (42)

where σk is the value of the z-component spin at site
k [9,12]. One can see references [1,12] for more details
and physical examples.

5.2 Two-temperature state

We turn now to the more complex case where part of the
chain is thermalized at inverse temperature βs and the rest
at inverse temperature βb. The transverse magnetization
is given by the general formula (32) with an initial value
matrix I which has non-diagonal terms, taking into ac-
count that within the system part, the spins are interact-
ing with each other and consequently have non-vanishing

correlations, the same being true for the bath-part of the
chain.

In the following, we consider two different situations.
The first is concerned with the interface behaviour, that is
mainly how the jump of the transverse magnetization at
the boundary between the system and the bath parts will
spread out. The second situation deals with the case of a
finite system, of N interacting spins, initially at low tem-
perature Ts in contact at both ends with infinite chains
at high temperature Tb. In this case, the initially large
transverse magnetization of the system (see the Hamilto-
nian (1)) will decay toward the small bath value as time
is evolving.

Consider the first situation. In order to avoid boundary
terms, we will take the thermodynamical limit where, both
system and bath sizes are sent to infinity. The expectation
value of the transverse magnetization is given by

〈σz
n〉(t) =

∑

i,k

F i
t (n− k)Ik,k+i (43)

where at the critical field value h = 1, the Green functions
are expressed in terms of Bessel functions:

F i
t (p) =

(−1)i
[
J2p(2t)J2(p−i)(2t) − J2p+1(2t)J2(p−i)−1(2t)

]
.

(44)

The relation giving the transverse magnetization decom-
poses into a sum of discrete convolution products

〈σz
n〉(t) =

∑

i

(F i
t � Ii)(n) (45)

with Green functions F i
t defined above. In the extreme

case where Ts = 0 and Tb = ∞, we arrive at a further sim-
plification since in the initial I matrix (30), the B matrix is
vanishing and the elements of the system matrix S are sim-
ply (S)ij = −∑∞

q=1 φs,q(i)ψs,q(j). In Figure 1 we show the
rescaled transverse magnetization profile obtained numer-
ically by exact diagonalization of the Hamiltonians Hs,
Hb and H.

We have the very simple expression:

〈σz
n〉(t) = mz,sys

bulk

[
1
2

+ f
(n

t

)]

(46)

wheremz,sys
bulk = 2/π is the initial bulk magnetization of the

system and where the scaling function f(u) is given by

f(u) =

⎧
⎪⎨

⎪⎩

1
2 u ≤ −1
− 1

2u − 1 < u < 1
− 1

2 u ≥ 1.
(47)

One may notice that since the excitations travel with ve-
locity c(h = 1) = 1, one expects effects only in the causal
region −1 < �/t < 1 where � is the distance from the ini-
tial interface. Outside the causal region, both system and
bath parts are still equilibrated and nothing is changed
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Fig. 1. Scaling function of the transverse magnetization ob-
tained for times t = 30, 60, 90, 120 on chains of total size
L = 200.

since they are at equilibrium. The remarkable linearity of
the profile is lost as soon as we have a departure from in-
finite and vanishing temperature. For finite temperature
cases, the profile is rounded.

In the off-critical region, h > 1, the transverse mag-
netization profile, in the case Ts = 0 and Tb = ∞, shows
a feature that was already remarked in the XX-chain [17]
context. Indeed, as one can see in Figure 2 the magnetiza-
tion relaxes in quantized steps. That is, if one concentrates
near the front entering into the bath part (which has a
vanishing magnetization, since it is at infinite tempera-
ture), one finds a staircase like structure with constant
area steps. If one defines

m(�, t) ≡ 〈σz
� 〉(t) − 〈σz

bath〉 , (48)

as it is clearly shown in Figure 2, the magnetization devia-
tion from the bath magnetization 〈σz

bath〉 = 0 has a scaling
behaviour of the form

m(�, t) = t−1/3g

(
�− t

t1/3

)

(49)

where again � measures the distance from the initial in-
terface, that is the interface between the system and the
bath. Numerically, as seen from Figure 2, it seems that the
envelope of the scaling function g is a simple square-root,
so that we have the conjecture

m(�, t) = At−1/3

√
t− �

t1/3
� < t , (50)

where A is a function of the field strength h.
The scaling form (49) implies that since the width of

the steps increases as t1/3 and their height decreases as
t−1/3, the area of the steps is indeed constant during time.
Each step carries a definite magnetic moment µ(h) de-
pending on the field strength h. As h is increased toward

−14 −12 −10 −8 −6 −4 −2 0 2
(l−t)/t

1/3

−1

0

1

2

3

4

(t
1/

3 m
(l

,t)
)2

Fig. 2. Scaling of the transverse magnetization deviation
m(�, t) obtained for times t = 80, 120, 160, 200 at transverse
field h = 10.

−200 0 200
0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5
n/t

0

5

10

15

t m
(n

,t)

Fig. 3. Rescaled transverse magnetization with Ts = 0,
Tb = ∞ and at h = 1 for different times t. Inset: Transverse
magnetization profiles at different times.

infinity, the magnetic moment carried by each step reaches
the value one (found numerically), which is reminiscent of
the fact that in this case, an up spin from the system ini-
tial state |Ψ〉 = | ↑↑ . . . ↑〉 (see the Hamiltonian (1)) is
injected into the bath and carried by one step.

This simple particle-like picture does not apply at the
critical field value h = 1, since in this case, the initial
system state is a critical one with long range correlations.
We have seen numerically that the quantized steps picture
is not present in the case h < 1.

Let us turn now to the finite system of size N , initially
at vanishing temperature, in contact at both ends with in-
finite chains at infinite temperature. We will refer to this
situation as the droplet situation. In Figure 3, we show the
rescaled transverse magnetization profile obtained numer-
ically at the critical field value h = 1. We see two different
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t m
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0.5

0.75

1

m

Fig. 4. Rescaled transverse magnetization with Ts = 0, Tb = 1
and at h = 1 for different times t. Inset: Transverse magneti-
zation profiles at different times.

regimes. In the first stage, for times smaller than the sys-
tem size N , at each interface we have the phenomenology
depicted previously in the infinite system case, that is a
linear behaviour of the interface given by equations (46)
and (47). One may also remark that some transverse mag-
netization is lost during the initial time t ∼ N . Indeed,
since the system at t = 0 is coupled with the bath chains,
and since the total energy is conserved, a portion of the
transverse energy term, ez = −h/2σz, will relax into the
coupling energy term, exx = −1/2σxσx, leading to a net
loss of transverse magnetization. For times larger than the
typical time τ = N , no more transverse magnetization is
lost and it behaves like a conserved quantity. From the nu-
merical profiles we see the emergence of a flat profile in the
middle of the system. The moving front between the flat
finite transverse magnetization region and the zero mag-
netization region is linear with a slope ∼ 1/(3t) and has
a constant width of size N . This leads, in the asymptotic
regime t� N , to the scaling behaviour

m(n, t) ≡ 〈σz
n〉(t) = Mtot

1
2t
Π

( n

2t

)
, (51)

where n is the site label measured from the middle of
the system and where Mtot =

∑
nm(n, t) is the total con-

served transverse magnetization Mtot =
∑

nm(n, t� N).
Numerically we found evidences for Mtot = Nmz,sys

bulk ,
where mz,sys

bulk = 2/π is the T = 0 equilibrium system bulk
transverse magnetization.

Finally in Figure 4, we show the results obtained in the
droplet problem in the case where the bath part is at finite
temperature. We have more or less the same scenario as in
the infinite temperature bath case, that is a velocity one
propagating front, which here is not linear, of constant
size N . In the large time limit, t � N , numerically we
obtain the scaling behaviour

m(n, t) = mz,bath
b +

N

2t
Π

( n

2t

)
k

(n

t

)
(52)

−1 −0.5 0 0.5 1
u

0

0.2

0.4

0.6

0.8

k(
u)

Fig. 5. Scaling function k(u) obtained for Tb = ∞, Tb = 5,
Tb = 2, Tb = 1, Tb = 1/2, from top to bottom.

with a temperature dependent function k(u). Again, the
total transverse magnetization is conserved in the asymp-
totic limit t � N for the same reasons as discussed
previously. If one defines the excess total magnetization
as ∆Mtot =

∑
n[m(n, t � N) − mz,bath

b ], one obtains
by integration of the profile (52) the relation ∆Mtot =
N
2

∫ 1

−1 k(u)du. In order to recover the scaling form (51),
one has, in the limit Tb → ∞, k(u) → 1. In Figure 5 we
show the scaling function k(u) obtained for different tem-
peratures of the bath. We see clearly the flattening of the
profile as the temperature increases.

6 Discussion

We have investigated the front propagation and scaling
profiles of transverse magnetization inhomogeneities in the
Ising quantum chain. The inhomogeneities were generated
initially by local equilibration with several thermal baths
at different temperatures. We have concentrated our study
on two distinct temperature configurations: the first one
being the interface problem, where half of the chain is
at a given temperature, the other half at an other tem-
perature. The second situation considered is one, referred
as the droplet problem, where initially a small part of
the infinite chain is at a different temperature from the
remaining part. In both cases, in the asymptotic time
regime the transverse magnetization exhibits a scaling
form t−1M(n/t), where the scaling functionM depends on
the initial temperatures and on the transverse field value
h. At the critical field value, h = 1, in the extreme case
T1 = 0 and T2 = ∞, the transverse magnetization front
is linear, while within the droplet a flat profile emerges.
Asymptotically, in the droplet situation the scaling profile
is given by a characteristic function Π(u). Another inter-
esting feature of such relaxation problem is the scaling
behaviour of the front itself. In particular, we have shown
that in the large field situation, h > 1, the front has a
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staircase structure with scaling t−1/3g((�−t)/t1/3), mean-
ing that the area of each step is conserved which implies
a quantized relaxation of the magnetization, as already
found in the XX-chain in reference [17].

We wish to thank the Groupe de Physique Statistique for a
friendly support.

Appendix

Introducing the 2L component operator Γ such that

Γ † = (Γ 1
1 , Γ

2
1 , Γ

1
2 , Γ

2
2 , . . . , Γ

1
L, Γ

2
L) (53)

the Hamiltonian (1) is put in the quadratic form

H =
1
4
Γ †TΓ (54)

where T is a 2L × 2L matrix. The diagonalization of
the Hamiltonian can then be performed by the intro-
duction of the diagonal Clifford operators γ1

q and γ2
q , re-

lated to the lattice operators via Γ 1
n =

∑
q φq(n)γ1

q and
Γ 2

n =
∑

q ψq(n)γ2
q with φ and ψ defined through the eigen-

value equation
TVq = εqVq (55)

with Vq(2n − 1) = φq(n) and Vq(2n) = −iψq(n). It leads
to the form

H = i
∑

q

εq
2
γ1

qγ
2
q . (56)

The time evolution of the diagonal operators is obtained
simply by γq(t) = U †

q (t)γqUq(t) with

Uq(t) = exp
(
εqt

2
γ1

qγ
2
q

)

= cos
εqt

2
+ γ1

qγ
2
q sin

εqt

2
. (57)

Utilizing the fact that {γi
q, γ

j
q′} = 2δijδqq′ , we obtain

γi
q(t) =

2∑

j=1

〈γj
q |γi

q(t)〉γj
q (58)

where we have defined the pseudo-scalar product as

〈C|D〉 =
1
2
{C†, D} (59)

with {., .} the anticommutator. The time-dependent lat-
tice Clifford generators, Γ i

n(t), can then be re-expressed
in terms of the initial time operators Γ with the help
of the inverse transforms γ1

q =
∑

k φq(k)Γ 1
k and γ2

q =
∑

k ψq(k)Γ 2
k . Finally, one obtains

Γ j
n(t) =

∑

k,i

〈Γ i
k|Γ j

n(t)〉Γ i
k (60)

with components

〈Γ 1
k |Γ 1

n(t)〉 =
∑

q

φq(k)φq(n) cos εqt

〈Γ 1
k |Γ 2

n(t)〉 = 〈Γ 2
n |Γ 1

k (−t)〉 = −
∑

q

φq(k)ψq(n) sin εqt

〈Γ 2
k |Γ 2

n(t)〉 =
∑

q

ψq(k)ψq(n) cos εqt . (61)

One may notice that the time evolution of the 2L-
components operator Γ is given by a 2L-rotation matrix
R with elements

Ri,j(t) = 〈Γj |Γi(t)〉 (62)

where Γ2i−1 ≡ Γ 1
i and Γ2i ≡ Γ 2

i . The time evolution of Γ
is then

Γ (t) = R(t)Γ . (63)

The set {Γ i
k} forms an orthonormal basis of a 2L-

dimensional linear vector space E with inner product de-
fined by 〈.|.〉 ≡ 1

2{.†, .}. Hence, every vector X ∈ E has a
unique expansion X =

∑
i,k〈Γ i

k|X〉Γ i
k. The string expres-

sion X1X2...Xn, with Xj ∈ E , is a direct product vector
of the space E1 ⊗ E2 ⊗ ...⊗ En which decomposition is

X1X2...Xn =
∑

i1,k1,...,in,kn

〈Γ i1
k1
|X1〉...〈Γ in

kn
|Xn〉Γ i1

k1
...Γ in

kn
.

(64)
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